Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.821
Filtrar
1.
Am J Reprod Immunol ; 91(4): e13847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661639

RESUMO

PROBLEM: Polycystic ovary syndrome (PCOS), a prevalent endocrine-metabolic disorder, presents considerable therapeutic challenges due to its complex and elusive pathophysiology. METHOD OF STUDY: We employed three machine learning algorithms to identify potential biomarkers within a training dataset, comprising GSE138518, GSE155489, and GSE193123. The diagnostic accuracy of these biomarkers was rigorously evaluated using a validation dataset using area under the curve (AUC) metrics. Further validation in clinical samples was conducted using PCR and immunofluorescence techniques. Additionally, we investigate the complex interplay among immune cells in PCOS using CIBERSORT to uncover the relationships between the identified biomarkers and various immune cell types. RESULTS: Our analysis identified ACSS2, LPIN1, and NR4A1 as key mitochondria-related biomarkers associated with PCOS. A notable difference was observed in the immune microenvironment between PCOS patients and healthy controls. In particular, LPIN1 exhibited a positive correlation with resting mast cells, whereas NR4A1 demonstrated a negative correlation with monocytes in PCOS patients. CONCLUSION: ACSS2, LPIN1, and NR4A1 emerge as PCOS-related diagnostic biomarkers and potential intervention targets, opening new avenues for the diagnosis and management of PCOS.


Assuntos
Biomarcadores , Mitocôndrias , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Síndrome do Ovário Policístico , Humanos , Síndrome do Ovário Policístico/imunologia , Síndrome do Ovário Policístico/metabolismo , Feminino , Biomarcadores/metabolismo , Mitocôndrias/metabolismo , Aprendizado de Máquina , Adulto , Mastócitos/imunologia , Mastócitos/metabolismo
2.
PLoS One ; 19(4): e0283915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635782

RESUMO

Anaphylaxis is a severe life-threatening hypersensitivity reaction induced by mast cell degranulation. Among the various mediators of mast cells, little is known about the role of tryptase. Therefore, we aimed to elucidate the role of protease-activating receptor-2 (PAR-2), a receptor activated by tryptase, in murine anaphylactic models using PAR-2-deficient mice and newly generated tryptase-deficient mice. Anaphylaxis was induced by IgE-dependent and IgE-independent mast cell degranulation in mice. PAR-2 deficiency exacerbated the decrease in body temperature and hypotension during anaphylaxis; however, the number of skin mast cells, degree of mast cell degranulation, and systemic and local vascular hyperpermeability were comparable in PAR-2 knockout and wild-type mice. Nitric oxide, which is produced by endothelial nitric oxide synthase (eNOS), is an indispensable vasodilator in anaphylaxis. In the lungs of anaphylactic mice, PAR-2 deficiency promoted eNOS expression and phosphorylation, suggesting a protective effect of PAR-2 against anaphylaxis by downregulating eNOS activation and expression. Based on the hypothesis that the ligand for PAR-2 in anaphylaxis is mast cell tryptase, tryptase-deficient mice were generated using CRISPR-Cas9. In wild-type mice, the PAR-2 antagonist exacerbated the body temperature drop due to anaphylaxis; however, the effect of the PAR-2 antagonist was abolished in tryptase-deficient mice. These results suggest that tryptase is a possible ligand of PAR-2 in anaphylaxis and that the tryptase/PAR-2 pathway attenuates the anaphylactic response in mice.


Assuntos
Anafilaxia , Animais , Camundongos , Anafilaxia/metabolismo , Imunoglobulina E/metabolismo , Ligantes , Mastócitos/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Triptases/genética , Triptases/metabolismo
3.
Medicine (Baltimore) ; 103(16): e37862, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640305

RESUMO

Early diagnosis of peri-implantitis (PI) is crucial to understand its pathological progression and prevention. This study is committed to investigating the signature genes, relevant signaling pathways and their associations with immune cells in PI. We analyzed differentially expressed genes (DEGs) from a PI dataset in the gene expression omnibus database. Functional enrichment analysis was conducted for these DEGs. Weighted Gene Co-expression Network Analysis was used to identify specific modules. Least absolute shrinkage and selection operator and support vector machine recursive feature elimination were ultimately applied to identify the signature genes. These genes were subsequently validated in an external dataset. And the immune cells infiltration was classified using CIBERSORT. A total of 180 DEGs were screened from GSE33774. Weighted Gene Co-expression Network Analysis revealed a significant association between the MEturquoise module and PI (cor = 0.6, P < .0001). Least absolute shrinkage and selection operator and support vector machine recursive feature elimination algorithms were applied to select the signature genes, containing myeloid-epithelial-reproductive tyrosine kinase, microfibrillar-associated protein 5, membrane-spanning 4A 4A, tribbles homolog 1. In the validation on the external dataset GSE106090, all these genes achieved area under curve values exceeding 0.95. GSEA analysis showed that these genes were correlated with the NOD-like receptor signaling pathway, metabolism of xenobiotics by cytochrome P450, and arachidonic acid metabolism. CIBERSORT revealed elevated levels of macrophage M2 and activated mast cells in PI. This study provides novel insights into understanding the molecular mechanisms of PI and contributes to advancements in its early diagnosis and prevention.


Assuntos
Peri-Implantite , Humanos , Peri-Implantite/genética , Biologia Computacional , Aprendizado de Máquina , Mastócitos , Algoritmos
4.
Cells ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667305

RESUMO

The significant role of mast cells in the development of allergic and inflammatory diseases is well-established. Among the various mechanisms of mast cell activation, the interaction of antigens/allergens with IgE and the subsequent binding of this complex to the high-affinity IgE receptor FcεRI stand out as the most studied and fundamental pathways. This activation process leads to the rapid exocytosis of granules containing preformed mediators, followed by the production of newly synthesized mediators, including a diverse array of cytokines, chemokines, arachidonic acid metabolites, and more. While conventional approaches to allergy control primarily focus on allergen avoidance and the use of antihistamines (despite their associated side effects), there is increasing interest in exploring novel methods to modulate mast cell activity in modern medicine. Recent evidence suggests a role for autophagy in mast cell activation, offering potential avenues for utilizing low-molecular-weight autophagy regulators in the treatment of allergic diseases. More specifically, mitochondria, which play an important role in the regulation of autophagy as well as mast cell activation, emerge as promising targets for drug development. This review examines the existing literature regarding the involvement of the molecular machinery associated with autophagy in FcεRI-dependent mast cell activation.


Assuntos
Autofagia , Mastócitos , Receptores de IgE , Autofagia/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/imunologia , Humanos , Receptores de IgE/metabolismo , Animais , Mitocôndrias/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/tratamento farmacológico
5.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667325

RESUMO

Recent studies suggested the potential role of mast cells (MCs) in the pathology of coronavirus disease 2019 (COVID-19). However, the precise description of the MCs' activation and the engagement of their proteases is still missing. The objective of this study was to further reveal the importance of MCs and their proteases (chymase, tryptase, and carboxypeptidase A3 (CPA3)) in the development of lung damage in patients with COVID-19. This study included 55 patients who died from COVID-19 and 30 controls who died from external causes. A histological analysis of the lung parenchyma was carried out to assess the protease profiles and degranulation activity of MCs. In addition, we have analyzed the general blood test, coagulogram, and C-reactive protein. The content of tryptase-positive MCs (Try-MCs) in the lungs of patients with COVID-19 was higher than in controls, but their degranulation activity was lower. The indicators of chymase-positive MCs (Chy-MCs) were significantly lower than in the controls, while the content of CPA3-positive MCs (CPA3-MCs) and their degranulation activity were higher in patients with COVID-19. In addition, we have demonstrated the existence of correlations (positive/negative) between the content of Try-MCs, Chy-MCs, and CPA3-MCs at different states of their degranulation and presence (co-adjacent/single) and the levels of various immune cells (neutrophils, eosinophils, basophils, and monocytes) and other important markers (blood hemoglobin, activated partial thromboplastin time (aPTT), international normalized ratio (INR), and fibrinogen). Thus, the identified patterns suggest the numerous and diverse mechanisms of the participation of MCs and their proteases in the pathogenesis of COVID-19, and their impact on the inflammatory process and coagulation status. At the same time, the issue requires further study in larger cohorts of patients, which will open up the possibility of using drugs acting on this link of pathogenesis to treat lung damage in patients with COVID-19.


Assuntos
COVID-19 , Pulmão , Mastócitos , SARS-CoV-2 , Triptases , Humanos , COVID-19/imunologia , COVID-19/patologia , Mastócitos/patologia , Mastócitos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Triptases/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/imunologia , Degranulação Celular , Quimases/metabolismo , Carboxipeptidases A/metabolismo , Adulto , Idoso de 80 Anos ou mais , Estudos de Casos e Controles
6.
Bratisl Lek Listy ; 125(5): 318-321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38624057

RESUMO

OBJECTIVES: to investigate the difference in serum tryptase levels between post-acute COVID-19 syndrome (PACS) patients and controls. BACKGROUND: PACS has been defined as symptoms that persist for more than 3 months after the onset of COVID-19. The pathogenesis is still unknown, but mast cell activation has been proposed as one of the mechanisms, and increased serum tryptase levels have been demonstrated in PACS patients. METHODS: A total number of 133 patients were included: 50 with PACS, 37 asymptomatic COVID-19 convalescents, and 46 controls with a negative history of COVID-19. Serum tryptase levels were determined in all participants. RESULTS: There was no significant difference in serum levels of tryptase among the groups. CONCLUSION: the role of mast cell activation in PACS remains unclear and further research is needed to fill the gaps in understanding the pathogenesis of this complex and heterogeneous disorder (Tab. 2, Ref. 17). Text in PDF www.elis.sk Keywords: post Acute COVID-19 syndrome, tryptase, mast cells, lactate dehydrogenase, ferritin.


Assuntos
COVID-19 , Síndrome Pós-COVID-19 Aguda , Humanos , Triptases , Mastócitos
7.
Immunol Allergy Clin North Am ; 44(2): 311-327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575226

RESUMO

Mast cells play a central role in the pathogenesis of eosinophilic gastrointestinal disorders (EGIDs), including eosinophilic esophagitis. Their interactions with immune and structural cells, involvement in tissue remodeling, and contribution to symptoms make them attractive targets for therapeutic intervention. More is being discovered regarding the intricate interplay of mast cells and eosinophils. Recent studies demonstrating that depletion of eosinophils is insufficient to improve symptoms of EGIDs have raised the question of whether other cells may play a role in symptomatology and pathogenesis of EGIDs.


Assuntos
Enterite , Eosinofilia , Esofagite Eosinofílica , Gastrite , Humanos , Mastócitos , Enterite/terapia , Enterite/diagnóstico , Gastrite/diagnóstico , Gastrite/terapia , Esofagite Eosinofílica/terapia , Esofagite Eosinofílica/diagnóstico
8.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612909

RESUMO

Skin aging is a complex process involving structural and functional changes and is characterized by a decrease in collagen content, reduced skin thickness, dryness, and the formation of wrinkles. This process is underpinned by multiple mechanisms including the free radical theory, inflammation theory, photoaging theory, and metabolic theory. The skin immune system, an indispensable part of the body's defense mechanism, comprises macrophages, lymphocytes, dendritic cells, and mast cells. These cells play a pivotal role in maintaining skin homeostasis and responding to injury or infection. As age advances, along with various internal and external environmental stimuli, skin immune cells may undergo senescence or accelerated aging, characterized by reduced cell division capability, increased mortality, changes in gene expression patterns and signaling pathways, and altered immune cell functions. These changes collectively impact the overall function of the immune system. This review summarizes the relationship between skin aging and immunity and explores the characteristics of skin aging, the composition and function of the skin immune system, the aging of immune cells, and the effects of these cells on immune function and skin aging. Immune dysfunction plays a significant role in skin aging, suggesting that immunoregulation may become one of the important strategies for the prevention and treatment of skin aging.


Assuntos
Envelhecimento da Pele , Pele , Mastócitos , Divisão Celular
9.
Front Immunol ; 15: 1360296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638437

RESUMO

Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.


Assuntos
Anti-Infecciosos , Hipersensibilidade , Humanos , Animais , Camundongos , Anti-Infecciosos/metabolismo , Citocinas/metabolismo , Imunoglobulina E , Imunidade Inata , Mastócitos , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
10.
Front Cell Infect Microbiol ; 14: 1358873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638822

RESUMO

SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Células Endoteliais/metabolismo , Mastócitos/metabolismo , Doenças Neuroinflamatórias , Microglia/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
11.
PLoS One ; 19(4): e0300668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578780

RESUMO

Mast cells are effector cells known to contribute to allergic airway disease. When activated, mast cells release a broad spectrum of inflammatory mediators, including the mast cell-specific protease carboxypeptidase A3 (CPA3). The expression of CPA3 in the airway epithelium and lumen of asthma patients has been associated with a Th2-driven airway inflammation. However, the role of CPA3 in asthma is unclear and therefore, the aim of this study was to investigate the impact of CPA3 for the development and severity of allergic airway inflammation using knockout mice with a deletion in the Cpa3 gene. We used the ovalbumin (OVA)- and house-dust mite (HDM) induced murine asthma models, and monitored development of allergic airway inflammation. In the OVA model, mice were sensitized with OVA intraperitoneally at seven time points and challenged intranasally (i.n.) with OVA three times. HDM-treated mice were challenged i.n. twice weekly for three weeks. Both asthma protocols resulted in elevated airway hyperresponsiveness, increased number of eosinophils in bronchoalveolar lavage fluid, increased peribronchial mast cell degranulation, goblet cell hyperplasia, thickening of airway smooth muscle layer, increased expression of IL-33 and increased production of allergen-specific IgE in allergen-exposed mice as compared to mocktreated mice. However, increased number of peribronchial mast cells was only seen in the HDM asthma model. The asthma-like responses in Cpa3-/- mice were similar as in wild type mice, regardless of the asthma protocol used. Our results demonstrated that the absence of a functional Cpa3 gene had no effect on several symptoms of asthma in two different mouse models. This suggest that CPA3 is dispensable for development of allergic airway inflammation in acute models of asthma in mice.


Assuntos
Asma , Mastócitos , Animais , Camundongos , Alérgenos/metabolismo , Líquido da Lavagem Broncoalveolar , Carboxipeptidases/metabolismo , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Pulmão/metabolismo , Mastócitos/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo
12.
Bioorg Chem ; 146: 107320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569323

RESUMO

Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 µM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 µM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.


Assuntos
Interleucina-4 , Mastócitos , Camundongos , Animais , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Mastócitos/metabolismo , Anafilaxia Cutânea Passiva , Simulação de Acoplamento Molecular , Imunoglobulina E/metabolismo , Imunoglobulina E/farmacologia , Camundongos Endogâmicos ICR , Camundongos Endogâmicos BALB C
13.
Eur J Histochem ; 68(2)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634735

RESUMO

Meningioma represents the most frequent tumor of the central nervous system (CNS). Correlations between the presence of mast cells (MCs) and grade or other histological features of meningioma are still debated. Our study aimed to better understand the relationship between mast cells and meningiomas and to compare our results based on specific histological subtypes and novel 2021 CNS WHO grading system. We observed some differences as regards the number of MCs and meningioma grade. In low-grade (grade 1) meningiomas, MCs were observed in 7/22 cases, while they were consistently present in all eight high-grade cases (grade 2 and grade  3). Among the grade 1 meningiomas, we observed two "low-positive", two "intermediate-positive", and three "high-positive" cases. Among the group of high-grade meningiomas, the six cases grade 2 were considered as "low-positive", while the two grade 3 cases showed a higher number of MCs and were included in the "intermediate-positive" group. Even though with no statistical significance, due to the low number of cases, our results seem to confirm a sort of relationship between meningioma grading and the number of MCs, as demonstrated by the higher percentage of high-grade meningiomas showing MCs infiltrates, compared to low-grade meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Mastócitos , Movimento Celular
14.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612600

RESUMO

As we draw the curtain on this Special Issue dedicated to the intricate roles of mast cells (MCs) in health and disease, we reflect on the insights garnered from the array of research articles featured within the published papers of the International Journal of Molecular Sciences (IJMS) [...].


Assuntos
Mastócitos
15.
J Drugs Dermatol ; 23(3): e81-e82, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38443117

RESUMO

Mastocytosis is a group of disorders characterized by the pathologic accumulation of mast cells in various tissues. One example of mastocytosis is urticaria pigmentosa, which presents with mastocytomas that can cause hives and, when irritated, pruritus. To our knowledge, we are describing the first case of urticaria pigmentosa without pruritus. The patient had a positive Darier's sign, stated that they never felt itchy, and denied ever using a topical steroid or antihistamine. Although our patient declined additional testing, patients like this may benefit from a detailed evaluation of their sensory system through both quantitative sensory testing and genetic analysis. J Drugs Dermatol. 2024;23(3):     doi:10.36849/JDD.7558e.


Assuntos
Urticaria Pigmentosa , Urticária , Humanos , Urticaria Pigmentosa/diagnóstico , Prurido/diagnóstico , Prurido/etiologia , Urticária/diagnóstico , Mastócitos , Emoções
16.
Acta Gastroenterol Belg ; 87(1): 15-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38431786

RESUMO

Background and study aim: Lately, mast cells (MCs) are increasingly implicated in the pathophysiology of irritable bowel syndrome (IBS). The aim of this systematic review was to assess the efficacy of mast cell directed therapies in reducing the main symptoms of IBS: abdominal pain and changes in stool frequency or consistency. Patients and methods: Pubmed, Web of Science and Scopus were searched until December 19, 2022. Trials evaluating the efficacy of mast cell directed therapies, compared to placebo or any form of control group, were included. Trial selection was performed in two stages: screening titles and abstracts and reviewing full papers identified as relevant, taking into account the inclusion criteria. Results: The search strategy identified a total of 1.384 citations. Eleven trials on 943 IBS patients and 197 controls were included: ten randomized controlled trials, two of which cross-over trials, and one cohort study. Of the 11 studies included in the systematic review, only three studies were found to be at low risk of bias. This limited evidence suggests a significant overall improvement in the key symptoms after treatment with disodium cromoglycate, ebastine, ketotifen or palmitoylethanolamide-polydatin compared to control groups. Conclusions: Mast cell modulating therapies could be of significant value in therapy for IBS patients. Further high-quality research is needed to establish the therapeutic efficacy of mast cell targeted therapies in order to draw robust conclusions and improve the clinical management of irritable bowel syndrome.


Assuntos
Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Mastócitos , Estudos de Coortes , Dor Abdominal
18.
Zhongguo Zhen Jiu ; 44(3): 283-294, 2024 Mar 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38467503

RESUMO

OBJECTIVES: To observe the effects of moxibustion on colonic mast cell degranulation and inflammatory factor expression in rats with diarrhea-predominant irritable bowel syndrome (IBS-D), and explore the potential mechanism of moxibustion in treating IBS-D. METHODS: Forty-five rat pups born from 5 healthy SPF-grade pregnant SD rats, with 8 rats were randomly selected as the normal group. The remaining 37 rats were intervened with maternal separation, acetic acid enema, and chronic restraint stress to establish the IBS-D model. The successfully modeled 32 rats were then randomly assigned to a model group, a ketotifen group, a moxibustion group, and a moxibustion-medication group, with 8 rats in each group. The rats in the ketotifen group were intervened with intragastric administration of ketotifen solution (10 mL/kg); the rats in the moxibustion group were intervened with suspended moxibustion on bilateral "Tianshu" (ST 25) and "Shangjuxu" (ST 37); the rats in the moxibustion-medication group were intervened with suspended moxibustion combined with intragastric administration of ketotifen solution. All interventions were administered once daily for 7 consecutive days. The diarrhea rate and minimum volume threshold of abdominal withdrawal reflex (AWR) were calculated before and after modeling, as well as after intervention. After intervention, colonic tissue morphology was observed using HE staining; colonic mucosal ultrastructure was examined by scanning electron microscopy; colonic mast cell ultrastructure was observed using transmission electron microscopy; mast cell degranulation was assessed by toluidine blue staining; serum and colonic levels of histamine, interleukin (IL)-1ß, IL-6, IL-1α, trypsin-like enzyme, and protease-activated receptor 2 (PAR-2) were measured by ELISA; the Western blot and real-time quantitative PCR were employed to evaluate the protein and mRNA expression of colonic IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2; the immunofluorescence was used to detect the positive expression of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 in the colonic tissue. RESULTS: Compared to the normal group, the rats in the model group exhibited extensive infiltration of inflammatory cells in colonic tissue, severe damage to the colonic mucosa, disordered arrangement of villi, reduced electron density, and a significant decrease in granule quantity within mast cells. The diarrhea rate and mast cell degranulation rate were increased (P<0.01), AWR minimum volume threshold was decreased (P<0.01); the serum and colonic levels of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 were elevated (P<0.01); the positive expression of histamine, as well as protein, mRNA and positive expression of IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 in the colon were all elevated (P<0.01). Compared to the model group, the rats in the ketotifen group, the moxibustion group, and the moxibustion-medication group exhibited significantly reduced infiltration of inflammatory cells in colonic tissue, relatively intact colonic mucosa, orderly arranged villi, increased electron density, and an augmented number of mast cell granules; the diarrhea rate and mast cell degranulation rate were decreased (P<0.01), and AWR minimum volume threshold was increased (P<0.01); the serum and colonic levels of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 were reduced (P<0.01); the positive expression of histamine, as well as protein, mRNA and positive expression of IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 in the colon were all decreased (P<0.01). Compared to the ketotifen group, the moxibustion group showed decreased serum levels of histamine, IL-6, and trypsin-like enzyme (P<0.01, P<0.05), as well as reduced colonic levels of IL-1ß and IL-6 (P<0.01, P<0.05); the protein expression of colonic IL-1ß, IL-1α, and PAR-2 was reduced (P<0.05), and the positive expression of colonic IL-1ß and trypsin-like enzyme was reduced (P<0.01, P<0.05). Compared to both the ketotifen group and the moxibustion group, the moxibustion-medication group exhibited decreased diarrhea rate and mast cell degranulation rate (P<0.01), an increased AWR minimum volume threshold (P<0.01), reduced serum and colonic levels of histamine, IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 (P<0.01), decreased protein expression of colonic IL-1ß, trypsin-like enzyme, and PAR-2 (P<0.01, P<0.05), reduced mRNA and positive expression of colonic IL-1ß, IL-6, IL-1α, trypsin-like enzyme, and PAR-2 (P<0.01, P<0.05), and decreased positive expression of colonic histamine (P<0.01). CONCLUSIONS: Moxibustion on "Tianshu" (ST 25) and "Shangjuxu" (ST 37) might inhibit low-grade inflammatory reactions in the colon of IBS-D model rats. The mechanism may be related to the inhibition of histamine and trypsin-like enzyme secreted by mast cell, thereby reducing the expression of related inflammatory factors.


Assuntos
Síndrome do Intestino Irritável , Moxibustão , Ratos , Animais , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/terapia , Ratos Sprague-Dawley , Mastócitos/metabolismo , Tripsina , Degranulação Celular , Histamina , Interleucina-6 , Cetotifeno , Privação Materna , Diarreia/etiologia , Diarreia/terapia , RNA Mensageiro
19.
Cells ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474426

RESUMO

The skin is a dynamic organ with a complex immune network critical for maintaining balance and defending against various pathogens. Different types of cells in the skin, such as mast cells (MCs) and group 2 innate lymphoid cells (ILC2s), contribute to immune regulation and play essential roles in the early immune response to various triggers, including allergens. It is beneficial to dissect cell-to-cell interactions in the skin to elucidate the mechanisms underlying skin immunity. The current manuscript concentrates explicitly on the communication pathways between MCs and ILC2s in the skin, highlighting their ability to regulate immune responses, inflammation, and tissue repair. Furthermore, it discusses how the interactions between MCs and ILC2s play a crucial role in various skin conditions, such as autoimmune diseases, dermatological disorders, and allergic reactions. Understanding the complex interactions between MCs and ILC2s in different skin conditions is crucial to developing targeted treatments for related disorders. The discovery of shared pathways could pave the way for novel therapeutic interventions to restore immunological balance in diseased skin tissues.


Assuntos
Hipersensibilidade , Imunidade Inata , Humanos , Linfócitos , Mastócitos , Pele
20.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474821

RESUMO

Food allergies are common worldwide and have become a major public health concern; more than 220 million people are estimated to suffer from food allergies worldwide. On the other hand, polyphenols, phenolic substances found in plants, have attracted attention for their health-promoting functions, including their anti-allergic effects. In this study, we examined the potential inhibitory effects of 80% ethanol extracts from 22 different vegetables on the degranulation process in RBL-2H3 cells. Our aim was to identify vegetables that could prevent and treat type I allergic diseases. We found strong inhibition of degranulation by extracts of perilla and chives. Furthermore, we verified the respective efficacy via animal experiments, which revealed that the anaphylactic symptoms caused by ovalbumin (OVA) load were alleviated in OVA allergy model mice that ingested vegetable extracts of perilla and chives. These phenomena were suggested to be caused by induction of suppression in the expression of subunits that constitute the high-affinity IgE receptor, particularly the α-chain of FcεR I. Notably, the anti-allergic effects of vegetables that can be consumed daily are expected to result in the discovery of new anti-immediate allergenic drugs based on the components of these vegetables.


Assuntos
Antialérgicos , Hipersensibilidade Alimentar , Humanos , Camundongos , Animais , Antialérgicos/farmacologia , Verduras/metabolismo , Imunoglobulina E/metabolismo , Mastócitos , Hipersensibilidade Alimentar/tratamento farmacológico , Extratos Vegetais/farmacologia , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...